Формалды жүйе
Аксиомалық әдіс немесе Формалды теория — ғылыми теорияны аксиомалар деп аталатын негізгі тұжырымдар арқылы құру тәсілі. Аксиомалық әдісті пайдаланудың үлгісін Евклид (біздің заманымыздан бұрын III ғасырда) өзінің атақты “Негіздер” деп аталатын еңбегінде көрсетті. XIX ғасырдың басында орыс ғалымы Н.И.Лобачевский мен венгр математигі Я.Больяйдің (1802—60 жылдары) ашқан Евклидтік емес геометриясы аксиомалық әдістің одан әрі дамуына үлкен әсер етті. Олар Евклидтің параллельділік туралы 5-қағидасын теріске шығара отырып, таза логикалық әдіс арқылы Евклид геометриясы сияқты үйлесімді әрі мазмұнға бай жаңа геометриялық теория құруға болатындығын дәлелдеді. Бұдан кейін математикадағы аксиомалар жүйесінің қайшылықсыздығы, толықтығы және тәуелсіздігі сияқты жалпы мәселелерді зерттеу күн тәртібіне қойылды. Аксиомалық әдістің одан әрі дамуы неміс математигі Д.Гильберттің (1862—1943 жылдары) еңбектерінде ерекше орын алды. Оның ғылыми бағытында аксиомалық теорияның ұғымы, яғни формальды жүйе ұғымы нақтыланды. Мұның нәтижесінде математикалық теория дәл математикалық объектілер ретінде қарастырылып, жалпы теорияны (метатеорияны) құруға мүмкіндік жасалды. Бұл салада австрия математигі К.Гёдель (1906—78) және американ математигі П.Дж.Коэн (1934) үлкен үлес қосты. Аксиомалық тәсіл — ғылыми теорияларды дедуктивті түрде құру тәсілдерінің бірі. Мұнда:
белгілі бір теорияның дәлелдеусіз қабылданатын сөйлемдерінің (аксиомаларының) кейбір жиыны іріктеліп алынады;
бұларға енетін түсініктер осы теория шеңберінде айқын түрде анықталмайды;
теорияға жаңа сөз атауларын (ұғымдар) енгізуге және бірқатар сөйлемдерді басқаларынан логикалық жолмен шығарып алуға мүмкіндік беретін осы теорияның анықтама ережелері мен түйіндеп шығару ережелері белгіленеді;
осы теорияның барлық баска сөйлемдері (теоремалары) жоғарыда айтылғандардың негізінде бірден қорытып шығарылады.
Аксиомалық тәсіл жайындағы "алғашқы көріністер Ежелгі Грекияда (Олеатгар, Платон, Аристотель, Эвклид) пайда болды.